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Abstract We study asymptotic inferences of the OLS estimator in the first
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tion with financial bubbles detection. We consider an extension by allowing a
non-zero drift, where the process behaves as a linear time trend during the non-
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1. INTRODUCTION

Non-stationary time series processes with possible explosive behaviors have
recently drawn lots of attention in both theoretical and practical areas. Studies
on autoregressive processes with explosive roots are pioneered by Phillips and
Magdalinos (2007), where asymptotic inferences for explosive processes differ
from unit root or near unit root asymptotics. Many subsequent researches in the
context of explosive time series have mainly paid attention to detecting explo-
sive movement of the series and estimating dates of emergence and collapse of
asset price bubbles. Testing procedures for bubbles have been accumulated in
the literature, which include recursive Dickey-Fuller(DF) or augmented DF tests
by Phillips, Wu and Yu (2011; PWY hereafter), recursive DF test equipped with
backward moving windows by Phillips, Shi and Yu (2015, PSY hereafter), re-
verse regression setup by Phillips and Shi (2018), CUSUM tests by Homm and
Breitung (2012) and Breitung and Kruse (2010). In these testing mechanisms,
the null process under non-bubble market periods becomes a pure unit root or a
random walk process without a drift. Thus, stock prices are good examples in
this regard.

While driftless models have many practical applications, some processes
may contain a deterministic time trend along with periodically emerging and
collapsing explosive components. In other words, the series of interest may be-
have as linear deterministic trends during the market period. The series turns to
exhibit exponential trends as they enter into bubble period. As an example in
this kind, house prices among other asset prices are often assumed to contain de-
terministic trends in some empirical studies (Gallin, 2006; Lee and Park, 2013).
In this case, it is appropriate to perform right-tailed unit root tests where the true
data generating processes consist of unit roots and a drift. Then, in relation to
above-mentioned procedures, it is a question whether the LS estimator for the
autoregressive parameter is still consistent, which is the main motivation of this
work.

While test statistic is computed using subsamples, our case is understood as
right-tailed version of the case 4 of unit root testing summarized in Hamilton
(1994). Above-mentioned testing mechanisms fall on the right-tailed version
of the case 2 of unit root tests. We analyze the asymptotic behavior of OLS
estimator in the first-order explosive autoregressive model in the presence of
a drift. It is found that the OLS estimator continues to be consistent in case of
presence of drift term in the estimating model. Also, we consider the consistency
of coefficient-based Dickey-Fuller test.
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2. MAIN RESULTS

Consider a random walk with a drift,

yt = µ + yt−1 + εt , (1)

where µ ̸= 0, εt is iid(0,σ2). The partial sums of the errors satisfy T−1/2
∑

t=[rT ]
j=1 ε j ⇒

B(r) = σW (r), for r ∈ [0,1], where W is a standard Brownian motion and ” ⇒
”denote the weak convergence of the associated probability measure. The data
generating process in (1) corresponds to the behavior of the series during the
non-bubble period.

In recent context of testing for bubbles, zero or asymptotically negligible
drift is often considered for the true data generating process. In our work, we
instead explicitly consider non-negligible drift term, where, as widely known, the
processes behave as a liner time trend, yt = y0 + µt +∑

t
j=1e j, for y0 = Op(1).

On the other hand, for explosive behavior of the process, we specify a mildly
explosive autoregressive(AR) model with a drift(Phillips and Magdalinos, 2007),

yt = µ +δT yt−1 + εt , (2)

δT = 1+ cT−α , for c > 0 and 0 < α < 1,

where the parameter α determines the speed of bubbles.
The above data generating process exists during the bubble period. In other

words, the series behaves as unit root process with a drift during market (non-
bubble) period as in (1), and by the onset of bubble period, it becomes explosive
process as in (2). In other words, the process behaves as a linear trend under
the market period, whereas it surges like an exponential trend under the bubble
period. The sample paths of explosive process depend on the presence of drift,
where literature mostly concentrate on driftless case. Besides, for the purpose
of testing, the (1) and (2) can be understood as null and alternative process,
respectively. A related work is Wang and Yu (2019), where some trend models
with a possible bubble are studied.

In order to estimate the autoregressive parameter, a transformed regression
model is considered (Hamilton, 1994),

yt = µ +ρyt−1 +θ t + εt = µ
∗+ρxt−1 +θ

∗t + εt , (3)

where µ∗ = µ(1−ρ), xt−1 = yt−1 −µ(t −1), and θ ∗ = θ +ρµ. Under the null
hypothesis of unit root, µ∗ = 0, ρ = 1 and θ ∗ = µ, which implies the unit root
process with a linear time trend.
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Firstly, we focus on the estimator of δT in the regression model (3), which
is typically computed using subsamples. To get some insights, we bring out the
the standard unit root asymptotics(the case IV in Hamilton (1994)). Under the
null hypothesis of ρ = 1 as well as θ = 0, the asymptotic distribution of the
full-sample OLS estimator are well developed by Phillips and Perron (1988).
Suppose the estimation is computed over the subsamples from τ1 = [r1T ] to
τ2 = [r2T ], for 0< r1 < r2 ≤ 1, and T is the sample size. Also, we set τw = [rwT ],
where rw = r2 − r1. Then the resulting limiting distribution of the subsample-
based OLS estimator is given by

τw(ρ̂ −1)∼a

[
(4r4

w −3r2
w)

∫ r2
r1

W (s)dW (s)+A(r1,r2)
]

D(r1,r2)
, (4)

where

A(r1,r2)

= (6r3
w −4r4

w)
∫ r2

r1
W (s)ds[W (r2)−W (r1)]+(6r3

w −12r2
w)

∫ r2
r1

sW (s)ds[W (r2)−W (r1)]+

12r3
w
∫ r2

r1
sW (s)ds

∫ r2
r1

W (s)ds−6r4
w(

∫ r2
r1

W (s)ds)2,

and

D(r1,r2)

= r3
w
{

r2
w
[∫ r2

r1
W 2(s)ds−4(

∫ r2
r1

W (s)ds)2]+12rw
∫ r2

r1
W (s)ds

∫ r2
r1

sW (s)ds−12(
∫ r2

r1
sW (s))2} .

The notation ”∼a ” denotes the asymptotic equivalence. If r1 = 0 and r2 = 1,
then the limits of the LS estimators simply reduce to the full-sample version
given in Phillips and Perron (1988)(Theorem 1) in the case of iid innovations.

Write the LS estimators as µ̂∗

ρ̂ −1
θ ∗−µ

=

 [rwT ] ∑x j−1 ∑ j
∑x j−1 ∑x2

j−1 ∑ jx j−1

∑ j ∑ jy j−1 ∑ j2

−1 ∑ε j

∑x j−1ε j

∑ jε j

 (5)

= Q−1R,

where the summation ∑ over j runs from τ1 = [r1T ] to τ2 = [r2T ], yt−1 = yt−1 −
ρ(t −1). Also, let β̂ = (µ̂∗, ρ̂ −1, θ̂ ∗−µ)′.

As clarified in PWY and PSY, it is critical where the bubbles are located
within the subsample for OLS estimation. Denote τe = [reT ] and τ f = [r f T ],
for 0 ≤ re < r f ≤ 1 as the date of emergence and collapse of explosive bubbles,
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respectively. We denote N0 = [1,τe),B = [τe,τ f ] and N1 = (τ f ,τ2].Given this,
we consider two different scenarios for recursive estimation, say, (i) r1 < re <
r2 < r f ; the subsamples begin with random walks and end within an explosive
era, and (ii) re < r1 < r f < r2; the subsamples start in an explosive period, and
finish in a non-explosive period. These two different cases are found to produce
distinctive asymptotic behavior for the OLS estimators. Other cases produce
identical results in the limit. For reference, the case of r1 < re < r f < r2 turns
out to be the same as the case of (ii). Also, to save a space, we restrict our
attention to the case of a single bubble.

Below, we present the main result, which is the consistency of the OLS esti-
mator for the autoregressive parameter.

Theorem 1: (i) For τ1 ∈ N0, τ2 ∈ B,

ρ̂ −δT ∼a q(r,c)B−1(re)[
∫ re

r1
B(r)dr

∫ re
r1

rB(r)dr]δ−(τ2−τe)
T T 1−2α , (6)

where q(r,c) denotes a constant term consisting of c,r1,r2 and re.
(ii) For τ1 ∈ B, τ2 ∈ N1,

ρ̂ −δT ∼a −u(r,c)T−α , (7)

where u(r,c) is a constant term consisting of c,r1,r2 and re. Both q(r,c) and
u(r,c) are detailed in the Appendix.

The part (i) corresponds to the case that the series begins in a market period
and ends in a bubble period. Conversely, the part (ii) is associated with the case
that the series begins in a bubble era and ends in a market era. The proof of
Theorem 1 is given in the Appendix.

Remarks.
1. The above results show the consistency of OLS estimator for two differ-

ence scenarios, the part (i) and (ii). Note that the convergence rate of the LS
estimator turns out to be much faster in the case (i) than in the case (ii), due to
the presence of the term δ

−(τ2−τe)
T , which shows an exponential behavior. For

the part (ii), where subsamples start from an explosive era and encounter the
collapse of bubbles, convergence rate depends on the parameter for explosion α .
The larger the value of α, the faster the convergence of the estimator.

2. To confirm this theoretical inferences, we perform a small set of simula-
tion studies. We consider the data generating process as yt = µ + δT yt−1 + et ,
where et is iidN(0,1), µ = 0.1, and δT = (1+cT−α). The sample size T equals
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to 200. For the part(i) of the Theorem 1, we set c = 0 for the first half the sam-
ple, and c = 1 for the remaining half, which implies that the bubble starts at the
middle of the sample period and lasts until the end of the sample. We conduct
1,000 iterations, and calculate sample mean squared error(MSE) for ρ as less
than T−10 for α = 0.1, 0.3, 2×T−9 for α = 0.5, and 2×T−5 for α = 0.7. Next,
for the part(ii) of the Theorem, we set c = 1 for the first half the sample and c = 0
for the remaining half. It indicates that the bubbles lasts up to the half the sam-
ple and then collapse(i.e., the fraction of break date is 0.5). The sample mean
squared error(MSE) is computed as 0.277, 0.062, 0.013 and 0.004, for α = 0.1,
0.3, 0.5 and 0.7. As explained above, faster convergence in the part (i) is then
clearly confirmed. Also, the MSE values for each α decrease as sample size T
grows. The sample MSE of LS estimator in the case (i) is found to go to zero at
a significantly much faster rate than the case (ii). It then confirms the theoretical
conjecture. Simulation codes are available upon request.

The results in the Theorem 1 lead to the coefficient-based Dickey Fuller unit
root testing, where the test statistic is denoted as Z(δ ) = τw(ρ̂ −1). Below is the
consistency of the Z(δ ) test.

Corollary 1: (i) For τ1 ∈ N0, τ2 ∈ B, Z(δ )→ ∞, and (ii) For τ1 ∈ B, τ2 ∈ N1,
Z(δ )→−∞.

Since Z(δ ) = τw(ρ̂ − δT )+ τw(δT − 1), when τ1 ∈ N0, τ2 ∈ B, the second
term, which is cT 1−α , dominates and Z(δ )→ ∞. When τ1 ∈ B, τ2 ∈ N1, the test
Z(δ ) obtains consistency, if u(r,c) > c. Thus, consistency of coefficient-based
DF test in PSY continues to hold in the presence of drift term. As we concentrate
on the consistency of the LS estimator, the case of DF t-test is unexplored in this
work.

3. CONCLUSION

We study asymptotic behaviors and consistency of OLS estimator for explo-
sive parameter in autoregressive model with a nonzero drift. Our results are an
extension of studies on explosive parameters in a driftless autoregressive model
in the recent time series context. Proposed inferences fit for some assets in real
world which follow linear deterministic trends during market period, and exhibit
exponential trend during bubble period.
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APPENDIX

Let τ1 = [r1T ], τ2 = [r2T ] and r2 − r1 = rw > 0, for r0 < r1 < r2 ≤ 1. De-
note τe = [reT ],τ f = [r f T ], where τe and τ f denote the dates of emergence and
collapse of explosive processes.

First, we summarize asymptotic results for ∑
τ2
τ1

x j−1 and ∑
τ2
τ1

x2
j−1 from PSY(Lemma

A.1-A.4),

(i)∑τ2
τ1

x j−1 ∼a
T (1+2α)/2

c
δ
(τ2−τe)
T B(re), when τ1 ∈ N0,τ2 ∈ B, (A.1)

∼a
T (1+2α)/2

c
δ
(τ f −τe)
T B(re), when τ1 ∈ B, τ2 ∈ N1,

(ii)∑τ2
τ1

x2
j−1 ∼a

T 1+α

2c
δ

2(τ2−τe)
T B2(re), when τ1 ∈ N0,τ2 ∈ B,

∼a
T 1+α

2c
δ

2(τ f −τe)
T B2(re), when τ1 ∈ B, τ2 ∈ N1,

where B(r) = σW (r), with standard Brownian motion W (r). Here, we do not
separately consider the case of τ1 ∈ N0,τ2 ∈ N2 and B ∈ [N0,N1], which is simply
the sum of two cases above.

We provide the inference for ∑
τ2
τ1

jx j−1.

Lemma 1.

∑
τ2
τ1

jx j−1 ∼a
(r2 − re)

c
T (3+2α)/2

δ
(τ2−τe)
T B(re), when τ1 ∈ N0, τ2 ∈ B,

∼a
(r2 − re)

c
T (3+2α)/2

δ
(τ f −τe)
T B(re), when τ1 ∈ B, τ2 ∈ N1,

∼a
(r2 − re)

c
T (3+2α)/2

δ
(τ f −τe)
T B(re), when τ1 ∈ N0, τ2 ∈ N1.

Firstly, for τ1 ∈ N0,τ2 ∈ B, we get

∑
τ2
τ1

jx j−1 = ∑
τe
τ1

jx j−1 +∑
τ2
τe+1 jx j−1. (A.2)

The first term is equal to

∑
τe
τ1

jx j−1 = T 5/2(re − r1)
1

τe − τ1
∑

τe
τ1

j
T

x j

T 1/2 ∼a T 5/2(re − r1)
∫ re

r1
sB(s)ds, (A.3)
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whereas, using the PSY(lemma A.1), the second term is written by

∑
τ2
τe+1 jx j−1 = xτe∑

τ2
τe+1 jδ j−1−τe

T (A.4)

= xτe

(τ2 − τe)δ
(τ2−τe)
T

(δT −1)
(1+op(1))

= xτe

(r2 − re)

c
T α+1

δ
(τ2−τe)
T (1+op(1))

∼a
(r2 − re)

c
T (3+2α)/2

δ
(τ2−τe)
T B(re),

where, in the second line, we get

∑
τ2
τe+1 jδ j−1−τe

T = ∂

[
(δ

(τ2−τe+1)
T −1)/(δT −1)

]
/∂δT

=
(τ2 − τe +1)δ (τ2−τe)

T
(δT −1)

− δ
(τ2−τe+1)
T −1
(δT −1)2 =

(τ2 − τe)δ
(τ2−τe)
T

(δT −1)
(1+op(1)).

Thus, the second term dominates the first term in (A.2).
Next, for the cases of τ1 ∈ B and τ2 ∈ N1, and of τ1 ∈ N0 and τ2 ∈ N2, the

results are derived by similar reasoning.

Lemma 2. We analyze the terms in the vector R. For τ1 ∈ N0, τ2 ∈ B and for
µ ̸= 0,

(i) ∑
τ2
τ1
(x j −µ −δT x j−1)∼a −c(re − r1)T (3−2α)/2∫ re

r1
B(r)dr,

(ii) ∑
τ2
τ1

x j−1(x j −µ −δT x j−1)∼a −c(re − r1)T (2−α)∫ re
r1

B2(r)dr,

(iii) ∑
τ2
τ1

j(x j −µ −δT x j−1)∼a −cT (5−2α)/2∫ re
r1

rB(r)dr.

For (i), we get

∑
τ2
τ1
(x j −µ −δT x j−1) (A.5)

= ∑
τe−1
τ1

[x j −µ − x j−1 +(1−δT )x j−1]+∑
τ2
τe

e j

∼a −c(re − r1)T (3−2α)/2∫ re
r1

B(r)dr,

where 1−δT =−cT−α . Next, write

∑
τ2
τ1

x j−1(x j −µ −δT x j−1) (A.6)

= ∑
τe−1
τ1

x j−1[x j −µ − x j−1 +(1−δT )x j−1]+∑
τ2
τe

e j

∼a δ
(τ2−τe)
T T (α+1)/2ZcB(re)− c(re − r1)T (2−α)∫ re

r1
B2(r)dr

∼a −c(re − r1)T (2−α)∫ re
r1

B2(r)dr,



JIN LEE 9

where the first term in third line Zc ∼ N(0,σ2/2c) comes from PSY(Lemma
A.5). For the part (iii), we obtain

∑
τ2
τ1

j(x j −µ −δT x j−1) (A.7)

= ∑
τe−1
τ1

j[x j −µ − x j−1 +(1−δT )x j−1]+∑
τ2
τe

je j

= ∑
τ2
τ1

je j − cT−α
∑

τe−1
τ1

jx j−1 +∑
τ2
τe

je j

∼a −cT (5−2α)/2∫ re
r1

rB(r)dr.

Lemma 3. For τ1 ∈ B, τ2 ∈ N1, and for µ ̸= 0,

(i) ∑
τ2
τ1
(x j −µ −δT x j−1)∼a −cδ

(τ f −τe)
T T (1−2α)/2B(re),

(ii) ∑
τ2
τ1

x j−1(x j −µ −δT x j−1)∼a −cδ
2(τ f −τe)
T T 1−αB2(re),

(iii) ∑
τ2
τ1

j(x j −µ −δT x j−1)∼a −cr f δ
(τ f −τe)
T T (3−2α)/2B(re).

For (i), we use the results of (i),(ii) in Lemma 4 and PSY(Lemma A.6) to
get

∑
τ2
τ1
(x j −µ −δT x j−1) (A.8)

= ∑
τ f
τ1 e j +(xτ f +1 −µ −δT xτ f )+∑

τ2
τ f +2[x j −µ − x j−1 +(1−δT )x j−1]

= ∑
τ f
τ1 e j +D1T +∑

τ2
τ f +1e j +D2T ,

where

D1T = xτ f +1 −µ −δT xτ f (A.9)

= (xτ f +µ + eτ f +1 −µ −δT xτ f )

= (1−δT )(xτ f −µτ f )+(1−δT )µτ f + eτ f +1

∼a −cT−α
δ
(τ f −τe)
T T 1/2B(re) =−cδ

(τ f −τe)
T T (1−2α)/2B(re),

and D2T = Op(T (3−2α)/2). It follows that D1T dominates D2T . Using the analo-
gous reasoning, the part (ii) is written as

∑
τ2
τ1

x j−1(x j −µ −δT x j−1) (A.10)

= ∑
τ f
τ1 x j−1e j + xτ f (xτ f +1 −µ −δT xτ f )+∑

τ2
τ f +2x j−1[e j +(1−δT )x j−1]

= ∑
τ f
τ1 x j−1e j +D3T +∑

τ2
τ f +1x j−1e j +D4T ,
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where
D3T ∼a −cδ

2(τ f −τe)
T T 1−αB2(re),

and D4T = Op(T 2−α), which is a lower order term than D3T . We continue to
analyze the part (iii) in a similar manner. Put

∑
τ2
τ1

j(x j −µ −δT x j−1) (A.11)

= ∑
τ f
τ1 je j +(τ f +1)(xτ f +1 −µ −δT xτ f )+∑

τ2
τ f +2 j(x j −µ −δT x j−1)

= ∑
τ f
τ1 je j +D5T +D6T ,

where
D5T ∼a −cr f δ

(τ f −τe)
T T (3−2α)/2B(re),

and D6T = Op(T (5−2α)/2). Thus, D5T dominates D6T .
Next, we study the limiting behavior of the matrix of regressors Q.

Lemma 4. Let ∆ be the determinant of the matrix Q. From direct calcula-
tions, we get

∆ ∼a K(r,c)δ 2(τ2−τe)
T B2(re)T 5−α , for τ1 ∈ N0,τ2 ∈ B,

where K(r,c) is a constant which consists of r1,r2,re and c. We do not try to
obtain the exact form of K(r,c), as it has no impact on asymptotic behavior.

For reference, if the process is a pure random walk without an explosive
component, then ∆ = Op(T 6) (cf: Phillips and Perron, 1988).

Proof of Theorem 1.
Denote Q−1 = ∆−1G, where G is the adjugate of Q. Write the OLS estimator

for the AR coefficient as

ρ̂ −δT = ∆
−1(G21R1 +G22R2 +G23R3) (A.12)

where Gi j denotes the (i, j)-th entry of the matrix G and Ri is the i-th entry of
R = (∑τ2

τ1
(x j −µ −δT x j−1), ∑

τ2
τ1

x j−1(x j −µ −δT x j−1), ∑
τ2
τ1

j(x j −µ −δT x j−1))
′.

First, consider the case (i) when τ1 ∈ N0, τ2 ∈ B. Direct computations to-
gether with Lemma 1 yield

G21R1 ∼a n(r,c)δ (τ2−τe)
T T 5B(re)

∫ re
r1

B(r)dr, (A.13)

where n(r,c) denotes a constant term consisting of r1,r2,re and c. Next, we
get G22R2 = Op(T 6−α), which is of lower order than G21R1, due to absence
of δ

(τ2−τe)
T term. We continue to obtain

G23R3 ∼a p(r,c)δ (τ2−τe)
T T 5B(re)

∫ re
r1

rB(r)dr, (A.14)
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where p(r,c) denotes a constant term involving r1,r2,re and c.
Thus, G21R1 and G23R3 have the same order of magnitude. Then, for τ1 ∈N0,

τ2 ∈ B, we combine the results and the Lemma 4 to get

ρ̂ −δT ∼a q(r,c)B−1(re)[
∫ re

r1
B(r)dr

∫ re
r1

rB(r)dr]δ−(τ2−τe)
T T 1−2α , (A.15)

where q(r,c) = [n(r,c)+ p(r,c)]K(r,c).
Next, consider the case (ii) that τ1 ∈ B and τ2 ∈ N1. By similar reasoning as

above, along with Lemma 5, we get

G21R1 ∼a −c×n(r,c)B2(re)δ
2(τ f −τe)
T T 4, (A.16)

G22R2 ∼a −s(r,c)B2(re)δ
2(τ f −τe)
T T 5−α ,

G23R3 ∼a −cr f p(r,c)B2(re)δ
2(τ f −τe)
T T 4,

where m(r,c) = cn(r,c), and s(r,c) is a constant term consisting of r1,r2,re and
c.

It follows that the term G22R2 is a dominant term. Thus, the limiting property
in the case of τ1 ∈ B and τ2 ∈ N1 is given by

ρ̂ −δT ∼a −u(r,c)T−α , (A.17)

where u(r,c) = s(r,c)K(r,c).



12 EXPLOSIVE AUTOREGRESSIVE MODELS WITH A DRIFT

REFERENCES

Breitung, J. and R. Kruse (2013). “When Bubbles Burst: Econometric Tests
Based on Structural Breaks,” Statistical Papers 54(4), 911-930.

Gallin, J. (2006). “The Long-run Relationship between House Prices and In-
come: Evidence from Local Housing Markets,” Real Estate Economics 34(3),
417-438.

Hamilton, J.D. (1994). Time Series Analysis Vol. 2, Princeton University Press.

Homm, U. and J. Breitung (2012). “Testing for Speculative Bubbles in Stock
Markets: a Comparison of Alternative Methods,” Journal of Financial Econo-
metrics 10(1), 198-231.

Lee, Y.S. and S. Park (2013). “Trend-Cycle Decomposition and Mean Rever-
sion of Korean Housing Prices,” Journal of the Korea Real Estate Analysts
Association 19(4), 41-54.

Miyanishi, M. (2011). “Testing the Hypothesis on the Cointegrating Vector
When Data May Have a Near Unit Root,” Journal of Economic Theory and
Econometrics 22(1), 1-27.

Phillips, P.C.B. and T. Magdalinos (2007). “Limit Theory for Moderate Devia-
tions from a Unit Root,” Journal of Econometrics 136(1), 115-130.

Phillips, P.C.B. and P. Perron (1988). “Testing for a Unit Root in Time Series
Regression,” Biometrika 75(2), 335-346.

Phillips, P.C.B., Wu, Y., and J. Yu. (2011). “Explosive Behavior in the 1990s
Nasdaq: When Did Exuberance Escalate Asset Values?,” International Eco-
nomic Review 52(1), 201-226.

Phillips, P.C.B. and S. Shi (2018). “Financial Bubble Implosion and Reverse
Regression,” Econometric Theory 34(4), 705-753.

Phillips, P.C.B., Shi, S., and J. Yu. (2015). “Testing for Multiple Bubbles: Limit
Theory of Real-time Detectors,” International Economic Review 56(4), 1079-
1134.

Wang, X. and J. Yu. (2019). “Bubble Testing under Deterministic Trends,” Sin-
gapore Management University Working Paper, 1-49.


	INTRODUCTION
	MAIN RESULTS
	CONCLUSION

